

Polyhedral fans

Polyhedral fans play an important role in *toric geometry*, the theory of polytopes and τ -tilting theory. A polyhedral cone in \mathbb{R}^n is the non-negative linear span of linearly independent vectors. A fan Σ in \mathbb{R}^n is a collection of such polyhedral cones in \mathbb{R}^n satisfying the following:

(1) Each face of a cone in Σ is also contained in Σ .

(2) The intersection of two cones in Σ is a face of each of the two cones.

Figure 1. Fan $\Sigma_{\mathbb{F}_a}$ of a Hirzebruch surface \mathbb{F}_a

For a cone $\sigma \in \Sigma$, define $star(\sigma) = \{\tau \in \Sigma : \sigma \subseteq \tau\}$ and the orthogonal projection $\pi_{\sigma} : \mathbb{R}^n \to \operatorname{span}\{\sigma\}^{\perp}$.

An admissible partition of the fan

Potential identifications of a cone $\sigma \in \Sigma$:

 $\mathcal{E}_{\sigma} \coloneqq \{\kappa \in \Sigma : \operatorname{span}\{\sigma\}^{\perp} = \operatorname{span}\{\kappa\}^{\perp} \text{ and } \pi_{\sigma}(\operatorname{star}(\sigma)) = \pi_{\kappa}(\operatorname{star}(\kappa))\}.$

Partitioning the sets \mathcal{E}_{σ} into actual identifications \rightarrow Partition \mathfrak{P} of Σ . Such a partition \mathfrak{P} is called *admissible* if whenever $\sigma_1 \sim \sigma_2$ are such that $\pi_{\sigma_1}(\tau_1) = \pi_{\sigma_2}(\tau_2)$ for some $\tau_1 \in \operatorname{star}(\sigma_1)$ and $\tau_2 \in \operatorname{star}(\sigma_2)$, then $au_1 \sim au_2.$

Lemma. Admissible partitions exist.

The category

Given a fan Σ and an admissible partition of its cones \mathfrak{P} , define the category of the partitioned fan, denoted by $\mathfrak{C}(\Sigma, \mathfrak{P})$, as follows: (1) Objects of $\mathfrak{C}(\Sigma, \mathfrak{P})$ are equivalence classes $[\sigma]$ of the partition \mathfrak{P} . (2) Hom_{$\mathfrak{C}(\Sigma,\mathfrak{P})$}($[\sigma], [\tau]$) consists of equivalence classes of objects in

$$\bigcup_{\mathbf{f}[\sigma],\tau'\in[\tau]}\operatorname{Hom}_{\Sigma}(\sigma',\tau')$$

under the relation $f_{\sigma_1\tau_1} \sim f_{\sigma_2\tau_2}$ if and only if $\pi_{\sigma_1}(\tau_1) = \pi_{\sigma_2}(\tau_2)$. Lemma. Composition is well-defined (cf. [5, Lem. 3.9, 3.10]).

Let \mathfrak{P}_1 and \mathfrak{P}_2 be partitions of a fan Σ . We say that \mathfrak{P}_1 is a finer partition than \mathfrak{P}_2 if

$$\sigma \sim_{\mathfrak{P}_1} \tau \Longrightarrow \sigma \sim_{\mathfrak{P}_2} \tau$$

for $\sigma, \tau \in \Sigma$. In this case, we write $P_1 \leq P_2$ and say P_2 is coarser than P_1 . Denote by APart(Σ) the set of all admissible partitions of a fan Σ . **Theorem.** The partially ordered set $APart(\Sigma)$ is a complete lattice.

The standard k-cube category \mathcal{I}^k is the poset category on subsets of $\{1, \ldots, k\}$ under inclusion. For any morphism $(A \xrightarrow{f} B)$ in some category \mathcal{C} , the *factorisation category* Faq(f) is the category whose objects are factorisations $A \xrightarrow{g} C \xrightarrow{h} B$ such that $h \circ g = f$ and whose morphisms are morphisms $\phi: C_1 \to C_2$ such that $\phi \circ g_1 = g_2$ and $h_1 = h_2 \circ \phi$. Given an object $(A \xrightarrow{g} C \xrightarrow{h} B)$ in Faq(f), we call g a first factor of f if g is irreducible in \mathcal{C} and h a last factor of f if h is irreducible in \mathcal{C} .

(2) If $\operatorname{rk}(f) = k$ then $\operatorname{Faq}(f) \cong \mathcal{I}^k$.

Theorem. The category $\mathfrak{C}(\Sigma, \mathfrak{P})$ of a fan with an admissible partition is cubical.

Consider the fan $\Sigma_{\mathbb{F}_a}$ from Figure 1. with the identification $\sigma_2 \sim \sigma_4$. Because $\pi_{\sigma_2}(\tau_2) = \pi_{\sigma_4}(\tau_1)$ and $\pi_{\sigma_2}(\tau_3) = \pi_{\sigma_4}(\tau_4)$ we must also identify $\tau_1 \sim \tau_2$ and $\tau_3 \sim \tau_4$ to make the partition admissible. We obtain the following partition:

Remark. We may also identify all rank 2 cones.

The classifying space \mathcal{BC} of a category \mathcal{C} is the geometric realisation of the simplicial nerve of the category. O-simplices correspond to the objects of $\mathcal C$ and the non-degenerate k-simplices correspond to the chains of composable non-identity morphisms $(X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \dots \xrightarrow{f_k} X_k)$ in \mathcal{C} .

Theorem. The classifying space $\mathcal{BC}(\Sigma, \mathfrak{P})$ is a *n*-dimensional CW-complex having one cell $e([\sigma])$ of dimension $k = n - \dim(\sigma)$ for each equivalence class $[\sigma] \in \mathfrak{P}$. The k-cell $e([\sigma])$ is the union of the factorisation cubes of the morphisms $[f_{\sigma\tau}]$, where τ is an *n*-dimensional cone in star (σ) .

The category of a partitioned fan

Maximilian Kaipel

Universität zu Köln

Cubical categories

A *cubical category*, introduced by Igusa [4], is a small category \mathcal{C} with the following properties: (1) Every morphism $f : A \to B$ has a rank $\operatorname{rk}(f) \in \mathbb{Z}_{>0}$ such that $\operatorname{rk}(g \circ f) = \operatorname{rk}(f) + \operatorname{rk}(g)$.

(3) The forgetful functor $\operatorname{Faq}(f) \to \mathcal{C}$ taking $A \xrightarrow{g} C \xrightarrow{h} B$ to C is an embedding.

(4) Every morphism of rank k is determined by its k first factors.

(5) Every morphism of rank k is determined by its k last factors.

Proposition. [4] If there exists a faithful functor from $\mathfrak{C}(\Sigma, \mathfrak{P})$ to some group and the category satisfies the "pairwise compatibility of last factors" then its classifying space is a $K(\pi, 1)$ space.

An example

 $\mathfrak{P} = \{\{\sigma_0\}, \{\sigma_1\}, \{\sigma_3\}, \{\sigma_2, \sigma_4\}, \{\tau_1, \tau_2\}, \{\tau_3, \tau_4\}\}.$

(a) The category $\mathfrak{C}(\Sigma_{\mathbb{F}_a},\mathfrak{P})$

Classifying space

A weak fan poset is a pair (Σ, \mathcal{P}) where Σ is a finite complete fan in \mathbb{R}^n and \mathcal{P} is a poset on Σ^n such that (1) for every interval I of \mathcal{P} , the union of all maximal cones in I is strongly-connected and (2) for every cone $\sigma \in \Sigma$, the set of maximal cones containing σ is an interval in \mathcal{P} , which we denote by $[\sigma^-, \sigma^+]$.

- $[\tau_1, \tau_2]$. Denote this element by $X_{[\tau_1, \tau_2]}$.

Relationships within the lattice

egory of any finer partition.

Theorem. The classifying space $\mathcal{BC}(A)$ of the τ -cluster morphism category is a $K(\pi, 1)$ space for the picture group G(A). *Proof.* (1) The g-fan $\Sigma(A)$ is a hyperplane arrangement. (2) There exists a faithful functor from $\mathfrak{C}(\Sigma(A), \mathfrak{P}_{\text{flat}}) \to G(\Sigma(A), \mathfrak{P}_{\text{flat}}, \mathfrak{P})$, where $\mathfrak{P}_{\text{flat}}$ is the maximal partition and \mathcal{P} the poset of regions. (3) The partition \mathfrak{P}_{WAC} giving rise to the τ -cluster morphism category is finer than $\mathfrak{P}_{\text{flat}}$, hence there exists a faithful functor to the same group given by composition. (4) The pairwise compatibility of last factors is satisfied by [1] hence $\mathcal{BC}(A)$ is a $K(\pi, 1)$ and the picture group is isomorphic to the fundamental group by [3].

- Notices. 3:852-892, 2019.
- 49(10):4376-4415, 2021
- 2023. arXiv:2302.12217.

Picture group

Definition Let $(\Sigma, \mathfrak{P}, \mathcal{P})$ be a partitioned fan poset. The *picture group* $G(\Sigma, \mathfrak{P}, \mathcal{P})$ has generators $\{X_{[\sigma]} : \sigma \in \Sigma^{n-1}\}$ and the following sets of relations:

• $X_{[\sigma_1]} \dots X_{[\sigma_k]} = X_{[\sigma'_1]} \dots X_{[\sigma'_\ell]}$, whenever $(\sigma_1, \dots, \sigma_k)$ and $(\sigma'_1, \dots, \sigma'_\ell)$ are two distinct sequences of codimension 1 cones labelling the arrows of some interval

• $X_{[\sigma_1^-,\kappa_1^-]} = X_{[\sigma_2^-,\kappa_2^-]}$, whenever $[f_{\sigma_1\kappa_1}] = [f_{\sigma_2\kappa_2}]$ in $\mathfrak{C}(\Sigma,\mathfrak{P})$.

Theorem. The functor $\mathfrak{C}(\Sigma, \mathfrak{P}) \to G(\Sigma, \mathfrak{P}, \mathcal{P})$ sending $[f_{\sigma\kappa}] \mapsto [\sigma^-, \kappa^-]$ is faithful when Σ is a rank 2 fan and \mathcal{P} does not annihilate any generators.

(1) If there are no 3 pairwise compatible rank 1 morphisms, $\mathcal{BC}(\Sigma, \mathfrak{P})$ is a $K(\pi, 1)$. (2) If \mathfrak{P} identifies all maximal cones, then π is the picture group.

Theorem. If $\mathfrak{P}_1 \leq \mathfrak{P}_2$ are admissible partitions, then the following hold: (1) There is a faithful surjective-on-objects functor $F : \mathfrak{C}(\Sigma, \mathfrak{P}_1) \to \mathfrak{C}(\Sigma, \mathfrak{P}_2)$. (2) The classifying space $\mathcal{BC}(\Sigma, \mathfrak{P}_2)$ is a quotient of $\mathcal{BC}(\Sigma, \mathfrak{P}_1)$. (3) The picture group $G(\Sigma, \mathfrak{P}_2, \mathcal{P})$ is a quotient of $G(\Sigma, \mathfrak{P}_1, \mathcal{P})$.

Corollary. If $\mathfrak{C}(\Sigma, \mathfrak{P}_2)$ admits a faithful functor to some group, then so does the cat-

Brauer cycle algebra

Let A = KQ/I be the Brauer cycle algebra of rank 3, which is given by

$$\stackrel{\prime}{\geq} 3$$

 $f = \langle ab, bc, ca, de, ef, fd, af - dc, be - fa, cd - eb \rangle.$

References

[1] E. Barnard and E. J. Hanson. Pairwise compatibility for 2-simple minded collections II: Preprojective algebras and semibrick pairs of full rank. Ann. Comb., 26(4):803-855, 2022.

[2] L. Demonet, O. Iyama, and G. Jasso. τ -tilting finite algebras, bricks, and g-vectors. International Mathematics Research

[3] E. J. Hanson and K. Igusa. τ -cluster morphism categories and picture groups. Communications in Algebra,

[4] K. Igusa. The category of noncrossing partitions, 2022. arXiv:1411.0196. [5] S. Schroll, A. Tattar, H. Treffinger, and N. Williams. A geometric perspective on the τ -cluster morphism category,