The category of a

Partitioned fans, hyperplane arrangements and $K(\pi, 1)$ spaces

Maximilian Kaipel

University of Cologne *mkaipel@uni-koeln.de*

Let $v_1, \ldots, v_s \in \mathbb{R}^n$ and write cone $\{v_1, \ldots, v_s\} := \{\sum_{i=i}^s \lambda_i v_i \in \mathbb{R}^n : \lambda_i \ge 0\}.$

Let $v_1, \ldots, v_s \in \mathbb{R}^n$ and write cone $\{v_1, \ldots, v_s\} \coloneqq \{\sum_{i=i}^s \lambda_i v_i \in \mathbb{R}^n : \lambda_i \ge 0\}$.

Definition

A fan Σ in \mathbb{R}^n is a collection of cones in \mathbb{R}^n satisfying the following:

() Each face of a cone in Σ is also a cone contained in Σ .

Let $v_1, \ldots, v_s \in \mathbb{R}^n$ and write cone $\{v_1, \ldots, v_s\} \coloneqq \{\sum_{i=i}^s \lambda_i v_i \in \mathbb{R}^n : \lambda_i \ge 0\}$.

Definition

- **(**) Each face of a cone in Σ is also a cone contained in Σ .
- 2 The intersection of two cones in Σ is a face of each of the two cones.

Let $v_1, \ldots, v_s \in \mathbb{R}^n$ and write cone $\{v_1, \ldots, v_s\} \coloneqq \{\sum_{i=i}^s \lambda_i v_i \in \mathbb{R}^n : \lambda_i \ge 0\}$.

Definition

- **(**) Each face of a cone in Σ is also a cone contained in Σ .
- 2 The intersection of two cones in Σ is a face of each of the two cones.
- A fan $\Sigma \subseteq \mathbb{R}^n$ is
 - finite if $|\Sigma| < \infty.$

Let $v_1, \ldots, v_s \in \mathbb{R}^n$ and write cone $\{v_1, \ldots, v_s\} \coloneqq \{\sum_{i=i}^s \lambda_i v_i \in \mathbb{R}^n : \lambda_i \ge 0\}$.

Definition

- **(**) Each face of a cone in Σ is also a cone contained in Σ .
- 2 The intersection of two cones in Σ is a face of each of the two cones.
- A fan $\Sigma \subseteq \mathbb{R}^n$ is
 - finite if $|\Sigma| < \infty$.
 - complete if $\bigcup_{\sigma \in \Sigma} \sigma = \mathbb{R}^n$.

Let $v_1, \ldots, v_s \in \mathbb{R}^n$ and write cone $\{v_1, \ldots, v_s\} \coloneqq \{\sum_{i=i}^s \lambda_i v_i \in \mathbb{R}^n : \lambda_i \ge 0\}$.

Definition

- **(**) Each face of a cone in Σ is also a cone contained in Σ .
- **2** The intersection of two cones in Σ is a face of each of the two cones.
- A fan $\Sigma \subseteq \mathbb{R}^n$ is
 - finite if $|\Sigma| < \infty$.
 - complete if $\bigcup_{\sigma \in \Sigma} \sigma = \mathbb{R}^n$.
 - simplicial if v_1, \ldots, v_s are linearly independent for each cone.

Examples of fans

Partitioned fans

Central NH=0

Figure: Hyperplane arrangement

Partition \mathfrak{P} of the cones of the fan Σ : $\kappa_1 \sim_{\mathfrak{P}} \kappa_2$ only if:

(a) Fan of Hirzebruch surface \mathbb{F}_a

(a) Fan of Hirzebruch surface \mathbb{F}_a

Partition \mathfrak{P} of the cones of the fan Σ : $\kappa_1 \sim_{\mathfrak{P}} \kappa_2$ only if: span $\{\kappa_1\}^{\perp} = \operatorname{span}\{\kappa_2\}^{\perp}$

(a) Fan of Hirzebruch surface \mathbb{F}_a

Partition \mathfrak{P} of the cones of the fan Σ : $\kappa_1 \sim_{\mathfrak{P}} \kappa_2$ only if:

• span $\{\kappa_1\}^{\perp} = \operatorname{span}\{\kappa_2\}^{\perp}$

$$e p_{\kappa_1^{\perp}}(\operatorname{star}(\kappa_1)) = p_{\kappa_2^{\perp}}(\operatorname{star}(\kappa_2)).$$

Partition \mathfrak{P} of the cones of the fan Σ : $\kappa_1 \sim_{\mathfrak{P}} \kappa_2$ only if:

- span $\{\kappa_1\}^{\perp} = \operatorname{span}\{\kappa_2\}^{\perp}$

Admissible: If $\kappa_1 \sim_{\mathfrak{P}} \kappa_2$ and $p_{\kappa_1^{\perp}}(\lambda_1) = p_{\kappa_2^{\perp}}(\lambda_2)$ for some $\lambda_i \in \operatorname{star}(\kappa_i)$, then $\lambda_1 \sim_{\mathfrak{P}} \lambda_2$.

(a) Fan of Hirzebruch surface \mathbb{F}_a

(a) Fan of Hirzebruch surface \mathbb{F}_a

Partition \mathfrak{P} of the cones of the fan Σ : $\kappa_1 \sim_{\mathfrak{P}} \kappa_2$ only if:

- span $\{\kappa_1\}^{\perp} = \operatorname{span}\{\kappa_2\}^{\perp}$
- $\ \, {\pmb { o } } \ \, {\pmb { p } }_{\kappa_1^\perp}(\operatorname{star}(\kappa_1)) = {\pmb { p } }_{\kappa_2^\perp}(\operatorname{star}(\kappa_2)).$

Admissible: If $\kappa_1 \sim_{\mathfrak{P}} \kappa_2$ and $p_{\kappa_1^{\perp}}(\lambda_1) = p_{\kappa_2^{\perp}}(\lambda_2)$ for some $\lambda_i \in \operatorname{star}(\kappa_i)$, then $\lambda_1 \sim_{\mathfrak{P}} \lambda_2$. Example:

- σ_1 and σ_3 may not be identified.
- σ₂ and σ₄ may be identified but then τ₁ and τ₂ as well as τ₃ and τ₄ have to be identified.

(a) Fan of Hirzebruch surface \mathbb{F}_a

Partition \mathfrak{P} of the cones of the fan Σ : $\kappa_1 \sim_{\mathfrak{P}} \kappa_2$ only if:

- span $\{\kappa_1\}^{\perp} = \operatorname{span}\{\kappa_2\}^{\perp}$
- $\ \, {\pmb { o } } \ \, {\pmb { p } }_{\kappa_1^\perp}(\operatorname{star}(\kappa_1)) = {\pmb { p } }_{\kappa_2^\perp}(\operatorname{star}(\kappa_2)).$

Admissible: If $\kappa_1 \sim_{\mathfrak{P}} \kappa_2$ and $p_{\kappa_1^{\perp}}(\lambda_1) = p_{\kappa_2^{\perp}}(\lambda_2)$ for some $\lambda_i \in \operatorname{star}(\kappa_i)$, then $\lambda_1 \sim_{\mathfrak{P}} \lambda_2$. Example:

- σ_1 and σ_3 may not be identified.
- σ_2 and σ_4 may be identified but then τ_1 and τ_2 as well as τ_3 and τ_4 have to be identified.

Definition (The category of a partitioned fan)

Objects: equivalence classes of cones in \mathfrak{P} . Morphisms: $f_{[\kappa],[\lambda]} = \bigcup \operatorname{Hom}_{\Sigma}(\kappa_i, \lambda_j)$ with the relation $f_{\kappa_1\lambda_1} \sim f_{\kappa_2\lambda_2}$ whenever $p_{\kappa_1^{\perp}}(\lambda_1) = p_{\kappa_2^{\perp}}(\lambda_2)$.

Category of a partitioned fan

(a) Fan of Hirzebruch surface \mathbb{F}_a

(b) The category of the partitioned fan (Σ, \mathfrak{P}_1) .

Category of a partitioned fan

Maximilian Kaipel

Partitioned fans

• The trivial partition. ~ posed category of fan

- The trivial partition.
- 2 The maximal partition.

- The trivial partition.
- 2 The maximal partition.
- So For *g*-vector fans: The "wide partition", identifying cones whenever they lie in the same minimal stability space.

- The trivial partition.
- 2 The maximal partition.

So For g-vector fans: The "wide partition", identifying cones whenever they lie in the same minimal stability space. A grad A

• cones are $\mathcal{C}_{(M,P)}$ where (M, P) is τ -rigid.

M emod A P e proj A ta: Aus lander - Reiten trans Calion Homa (M, tall) = 0 Homa (P, M) = 0

A: folabelon

- The trivial partition.
- The maximal partition. 2
- For g-vector fans: The "wide partition", identifying cones whenever they lie in the same 3 minimal stability space.

 - inimal stability space. cones are $\mathcal{C}_{(M,P)}$ where (M,P) is τ -rigid. identification $\mathcal{C}_{(M_1,P_1)} \sim \mathcal{C}_{(M_2,P_2)}$ whenever $M_1^{\perp} \cap {}^{\perp}\tau M_1 \cap P_1^{\perp} = M_2^{\perp} \cap {}^{\perp}\tau M_2 \cap P_2^{\perp}$.

- The trivial partition.
- 2 The maximal partition.
- Sor g-vector fans: The "wide partition", identifying cones whenever they lie in the same minimal stability space.
 - cones are $\mathcal{C}_{(M,P)}$ where (M,P) is τ -rigid.
 - identification $\mathcal{C}_{(M_1,P_1)} \sim \mathcal{C}_{(M_2,P_2)}$ whenever $M_1^{\perp} \cap {}^{\perp} \tau M_1 \cap P_1^{\perp} = M_2^{\perp} \cap {}^{\perp} \tau M_2 \cap P_2^{\perp}$.
- For hyperplane arrangements: The "shard partition", or the "flat partition", identifying cones whenever the smallest shard intersection/flat they are contained in coincides.

- The trivial partition.
- 2 The maximal partition.
- Sor g-vector fans: The "wide partition", identifying cones whenever they lie in the same minimal stability space.
 - cones are $\mathcal{C}_{(M,P)}$ where (M,P) is τ -rigid.
 - identification $\mathcal{C}_{(M_1,P_1)} \sim \mathcal{C}_{(M_2,P_2)}$ whenever $M_1^{\perp} \cap {}^{\perp} \tau M_1 \cap P_1^{\perp} = M_2^{\perp} \cap {}^{\perp} \tau M_2 \cap P_2^{\perp}$.
- For hyperplane arrangements: The "shard partition", or the "flat partition", identifying cones whenever the smallest shard intersection/flat they are contained in coincides.
 - ► Flats are intersections of hyperplanes.

- The trivial partition.
- 2 The maximal partition.
- Sor g-vector fans: The "wide partition", identifying cones whenever they lie in the same minimal stability space.
 - cones are $\mathcal{C}_{(M,P)}$ where (M,P) is τ -rigid.
 - identification $\mathcal{C}_{(M_1,P_1)} \sim \mathcal{C}_{(M_2,P_2)}$ whenever $M_1^{\perp} \cap {}^{\perp} \tau M_1 \cap P_1^{\perp} = M_2^{\perp} \cap {}^{\perp} \tau M_2 \cap P_2^{\perp}$.
- For hyperplane arrangements: The "shard partition", or the "flat partition", identifying cones whenever the smallest shard intersection/flat they are contained in coincides.
 - Flats are intersections of hyperplanes.
 - Shards are parts of hyperplanes determined by a choice of base regions.

 Σ : finite complete fan in \mathbb{R}^n

Definition (Reading, 2005)

A fan poset (resp. weak fan poset) \mathcal{P} on Σ is a poset whose elements are the maximal cones of Σ , such that:

 Σ : finite complete fan in \mathbb{R}^n

Definition (Reading, 2005)

A fan poset (resp. weak fan poset) \mathcal{P} on Σ is a poset whose elements are the maximal cones of Σ , such that:

So For every interval I of P, the union of all maximal cones in I is a polyhedral cone (resp. simply-connected);

 Σ : finite complete fan in \mathbb{R}^n

Definition (Reading, 2005)

A fan poset (resp. weak fan poset) \mathcal{P} on Σ is a poset whose elements are the maximal cones of Σ , such that:

- So For every interval I of P, the union of all maximal cones in I is a polyhedral cone (resp. simply-connected);
- **2** For every cone $\sigma \in \Sigma$, the set of maximal cones, star $(\sigma)^n$, containing σ is an interval in \mathcal{P} , which we denote by $[\sigma^-, \sigma^+]$ and call a *facial interval*.

C(M,P) < C(N,a) wherever GenM < GenN [Adachi-1yuma-Reilen'14]

(a) Hirzebruch surface 𝔽_a
 weak for poset

Poset of regions [Edelman 1803] choose base region B orienting the adjacency gaph away from B

Figure: Hyperplane arrangement

Partitioned fans

Incidence group

Definition

The incidence group $G(\Sigma, \mathfrak{P}, \mathfrak{P})$ may be presented with the set of generators $\{X_{[\sigma]} : \sigma \in \Sigma^{n-1}\} \cup \{g_{\tau} : \tau \in \Sigma^n\}$ and a relation

$$g_{ au_1} = X_{[\sigma]}g_{ au_2}$$

if there is an arrow $\tau_1 \xrightarrow{\sigma} \tau_2$ in Hasse(\mathcal{P}) labelled by σ and the relation $g_{0^-} = e$.

Incidence group

Definition

The incidence group $G(\Sigma, \mathfrak{P}, \mathfrak{P})$ may be presented with the set of generators $\{X_{[\sigma]} : \sigma \in \Sigma^{n-1}\} \cup \{g_{\tau} : \tau \in \Sigma^n\}$ and a relation

$$g_{\tau_1} = X_{[\sigma]}g_{\tau_2}$$

if there is an arrow $\tau_1 \xrightarrow{\sigma} \tau_2$ in Hasse(\mathcal{P}) labelled by σ and the relation $g_{0^-} = e$.

See also [Igusa-Todorov-Weyman, 2016], [Hanson-Igusa, 2021]

Incidence group

(a) Fan of Hirzebruch surface \mathbb{F}_a

(b) Hasse diagram of the fan poset

$$\langle g_{33}; , \chi_{[e_i]} | g_{31} = \chi_{[e_{4}]g_{34}} , g_{37} = \chi_{[e_i]}g_{32} + g_{53} = e, g_{52} = \chi_{[e_i]}g_{37} = \chi_{[e_{3}]}$$

Can we construct a $K(\pi, 1)$ space for the incidence group from the fan?

Can we construct a $K(\pi, 1)$ space for the incidence group from the fan?

In other words, a space whose only non-trivial homotopy group is in degree 1, and is equal to the incidence group.

Can we construct a $K(\pi, 1)$ space for the incidence group from the fan?

In other words, a space whose only non-trivial homotopy group is in degree 1, and is equal to the incidence group.

Theorem

The classifying space of the category of a partitioned fan is a cube complex.

Can we construct a $K(\pi, 1)$ space for the incidence group from the fan?

In other words, a space whose only non-trivial homotopy group is in degree 1, and is equal to the incidence group.

Theorem

The classifying space of the category of a partitioned fan is a cube complex.

Necessary conditions:

• The fundamental group of the space has to be the incidence group.

Can we construct a $K(\pi, 1)$ space for the incidence group from the fan?

In other words, a space whose only non-trivial homotopy group is in degree 1, and is equal to the incidence group.

Theorem

The classifying space of the category of a partitioned fan is a cube complex.

Necessary conditions:

• The fundamental group of the space has to be the incidence group.

Sufficient conditions [Gromov, 1987][Igusa, 2014]

• There exists a faithful functor to some group G.

Can we construct a $K(\pi, 1)$ space for the incidence group from the fan?

In other words, a space whose only non-trivial homotopy group is in degree 1, and is equal to the incidence group.

Theorem

The classifying space of the category of a partitioned fan is a cube complex.

Necessary conditions:

The fundamental group of the space has to be the incidence group.
Sufficient conditions [Gromov, 1987] [Igusa, 2014] universal covering is a cube ordex
There exists a faithful functor to some group G.
The category of a partitioned fan satisfies the "pairwise compatibility property". Du
k(T_1') <-> contendible
A cube complex is CAT(0) iff every vertex link is a cube simp complex.

Results in rank 2

(a) Three pairs of compatible morphisms.

Lemma

 $\mathfrak{C}(\Sigma, \mathfrak{P})$ satisfies the pairwise compatibility property if and only there is no set of three pairwise compatible rank 1 morphisms.

Results in rank 2

(a) Three pairs of compatible morphisms.

Lemma

 $\mathfrak{C}(\Sigma, \mathfrak{P})$ satisfies the pairwise compatibility property if and only there is no set of three pairwise compatible rank 1 morphisms.

Proposition

If the poset is non-degenerate, then there exists a faithful functor to the incidence group.

Results in rank 2

(a) Three pairs of compatible morphisms.

Lemma

 $\mathfrak{C}(\Sigma, \mathfrak{P})$ satisfies the pairwise compatibility property if and only there is no set of three pairwise compatible rank 1 morphisms.

Proposition

If the poset is non-degenerate, then there exists a faithful functor to the incidence group.

Lemma

If the partition \mathfrak{P} identifies all maximal cones, the fundamental group is the incidence group.

General results

Proposition

Let $(\Sigma, \mathfrak{P}, \mathfrak{P})$ be a non-degenerate partitioned fan poset. If \mathfrak{P} is a polygonal lattice and \mathfrak{P} identifies all maximal cones of Σ , then the fundamental group of the classifying space of $\mathfrak{C}(\Sigma, \mathfrak{P})$ is isomorphic to the incidence group.

General results

Proposition

Let $(\Sigma, \mathfrak{P}, \mathfrak{P})$ be a non-degenerate partitioned fan poset. If \mathfrak{P} is a polygonal lattice and \mathfrak{P} identifies all maximal cones of Σ , then the fundamental group of the classifying space of $\mathfrak{C}(\Sigma, \mathfrak{P})$ is isomorphic to the incidence group.

Theorem

For each simplicial fan, the categories of a partitioned fan form a complete lattice defined by refinement of the partitions.

General results

Proposition

Let $(\Sigma, \mathfrak{P}, \mathfrak{P})$ be a non-degenerate partitioned fan poset. If \mathfrak{P} is a polygonal lattice and \mathfrak{P} identifies all maximal cones of Σ , then the fundamental group of the classifying space of $\mathfrak{C}(\Sigma, \mathfrak{P})$ is isomorphic to the incidence group.

Theorem

For each simplicial fan, the categories of a partitioned fan form a complete lattice defined by refinement of the partitions.

Proposition

Let \mathfrak{P}_1 be a finer partition than \mathfrak{P}_2 . If there exists a faithful group functor for $\mathfrak{C}(\Sigma, \mathfrak{P}_2)$ then there exists a faithful group functor for $\mathfrak{C}(\Sigma, \mathfrak{P}_1)$.

$\mathcal{K}(\pi,1)$ for a partitioned hyperplane arrangement

Theorem

The category of the flat-partitioned hyperplane arrangement admits a faithful group functor.

Corollary

With the shard-partition, the classifying space is a $K(\pi, 1)$ space for the incidence group.

- Faithful functor is inherited from the coarser flat-partition.
- Pairwise compatibility follows from [Barnard-Hanson, 2022] and [Mizuno, 2022]

Thank you!